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Antiferromagnetic symmetry breaking in the half-filled 
Hubbard model in infinite dimensions 
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G6ttingen. Germany 

Received 4 March 1994 

Abstract We study the hdf-Hled Hubbard model on a hypercubic lattice in infinite dimensions 
in the presence of a staggered magnetic field. Using the analyticity of the Andenon impurity 
model and assuming thy for small enough on-site repulsion U the high-temperature phase is 
a Fermi liquid, we show thal at weak coupling the nesting properly of the non-interacting 
band-structure necessarily leads to antiferromagnetic symmetry breaking at a finile temperature. 

1. Introduction 

A few years ago Metzner and Vollhardt 111 realized that the Hubbard model has a non- 
hivial limit of infinite dimensions d + CO if the nearest-neighbour hopping energy is 
scaled proportionally to I/&. Since then, the physics of the Hubbard model in d = CO 

has been investigated by many authors [Z-111. Recent works have mainly focused on 
Fermi liquid and Mom insulating phases [5,7]. The self-consistency equation for the local 
Green function in the presence of a staggered magnetic field was written in 19.101, but 
a detailed analysis of this equation seems not to exist in the literature. In [I21 we have 
shown that technical problems associated with the halfing of the Brillouin zone due to 
broken translational invariance can be elegantly avoided by choosing the staggered field in 
the x direction. Here we shall give a more detailed analysis of antiferromagnetic symmetry 
breaking and derive several exact expressions for the staggered susceptibility. 

The Hamiltonian of the Hubhard models under consideration is given by 7 i  = 310 +U, 
with 

where the R sum is over N sites of a d-dimensional hypercubic lattice, h is a staggered 
field and II = In, ..., X I  is the antiferromagnetic ordering vector (we set the lattice spacing 

creates spin-u fermions at site R, and U = [Ux, U?, uzl are the Pauli matrices. We allow 
only hoppings that connect different sublattices, so that &n'r = -1. This implies that the 
hand smchue of the non-interacting model, defined by 

equal to unity). We have defined two-component operators cf, = [cR+, CRI], where cRo t 
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satisfies the perfect nesting condition 

Ek+n = - € E .  (1.4) 

We have included terms proportional to the density in the definition of the interaction in 
(U), because then at half filling the spectrum of our model has particle-hole symmetry, 
so that the chemical potential is exactly zero at any temperature and the Hartree correction 
to the self-energy vanishes. Metzner and Vollhardt [ 11 first pointed out that a non-trivial 
limit d -+ 00 is only obtained if the fT are properly rescaled with inverse powers of d to 
compensate for the increase in the number of neighbours in high dimensions. The nearest- 
neighbour hopping energy should be scaled as t, = t / a .  For general hoppings connecting 
different sublam’ces, we require that t, vanishes for large d in such a way that for d -+ 00 

the density of stafes at U = 0 has a finite limit ~(6): 

The wavevector sum is over the first Brillouin zone --IT < ki < rr, i = 1, . . . , d. Note also 
that the hopping energies in (1.1) depend only on the distance between the sites, and do not 
break the translational invariance of the lattice. This is sufficient to ensuret that p(0) > 0. 

2. Antiferromagnetism in infinite dimensions 

In this section we shall derive an exact functional-integral equation for the self-energies in 
the presence of a staggered field. Although an equivalent equation has been written down 
in [9 ] ,  we use here an unconventional basis that greatly simplifies the following analysis. 

Imposing the usual periodic boundary conditions, the free part ‘Hc, of our Hamiltonian 
can be brought into block-diagonal form via Fourier transformation: 

Conventionally, one chooses the staggered field in the z direction, h .  (r = haz. In this case 
‘Ho can be’ written as 

where the momentum sum is over the reduced Brillouin zone of the antiferromagnet, and 

in (2.2) depends on the spin projection. For a derivation of the functional-integral equation 
for the exact self-energy in d = 00 this introduces unpleasant technical difficulties, because 
we have to deal with two-component operators that cmy in addition a spin index. A 

If we allow for hoppings that break the translational invariance of the lattice, one can ConsVUct models with 
@wt nesting and panicle-hole symmetry that have the property p(0)  = 0. I am grateful to P van Dongcn for 
pointing this out to me. 

Ck, - t - t  - [ck,,, cktnO]. t Note that the sign of the off-diagonal elements in the quadratic form 
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simple mck to avoid this difficulty is to choose the staggered field in the x direction [13], 
h . CT = hul. In this case (1.1) can be written as 

where the two-component operators are now defined by 

(2.4) 

Note that the ck are composed from operators with a different spin projection, and that 
the sum in (2.3) is over the full Brillouin zone. Loosely speaking, the antiferromagnetic 
symmetry breaking is now labeled by a spin flip, so that the extra spin summation in (2.2) 
can he absorbed in the second component of Ck. Of course, this is only a technical point, 
but it greatly facilitates the derivation of the functional-integral equation for the exact Green 
function. In momentum space the interaction part of our Hamiltonian can be written as 

U = E 

t -  f t C, - [Ckr.ck:+njI. 

U f 6*(ki + kz - k3 - kd[C!,+Ck,+ - & k l , ~ l [ ~ b + ~ L ~ ~ + n j  - 9 b . d  (2.5) 
kl . . A n  

where 6k.V is the usual Kronecker 6, and 6"(k) = + x R e i k ' R  = CK 6k.K7 where ( K )  
are the vectors of the reciprocal lattice. In (2.5) we have shifted the momentum of the last 
two operators by II. Obviously, this leaves 6' invariant, so that the interaction term can be 
expressed entirely in terms of the components of the operator c k  defined in (2.4). 

We now introduce the imaginary-time 2 x 2 matrix Green function 

G ( k ,  r - T') = -('T[Ck(T)C~(~')l) (2.6) 

where 7 denotes time ordering in imaginary time, and the time evolution and thermal 
average are determined by Xi f U. The corresponding non-interacting Matsubara Green 
function is 

where on = xT(2n + 1). The self-energy matrix is defined as usual, Z(k ,  io,) = 
- G'')-'(k, io,,) - G - I ( k ,  io,). The essential simplification in d = 00 is that momentum 
conservation can be ignored 121, and we can replace 6*(k) + 1 / N .  The self-energy is then 
independent of k, and must be of the form 

Particlehole symmetry implies that 

C(iw,) = -Z(-ion) 

r(io,) = r(-ion). 
(2.9) 

(2.10) 
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The exact on-site Green function is then given by 

(2.1 1) 

where we use the abbreviation G+ = G(iw,) and E = C(iw.). From (2.7) it is clear 
that in general the summand on the left-hand side of (2.11) depends on eh and Eh+", and 
that therefore the summation cannot be reduced to an integration over the density of states. 
However, if we require that the non-interacting band structure satisfies the perfect nesting 
condition (1.4), the summand in (2.11) depends on only, so that 

(2.12) 

The unique signature of perfect nesting is that the energy c enters in the upper and lower 
diagonal elements with opposite sign. 

The functional-integral equation for the exact Green function is now derived in the 
standard way [2]. One defines a variational Green function 

(2.13) 

and a singlesite impurity action 

where C+(s) = [C~(T), C:(r)] are imaginary-time two-component Grassmann fields, with 
Matsubara components 

and n,(r) = CJ(r)C,(r). The functional-integral equation for the self-energies {&} is 
then a 2 x 2 matrix equation 

Because Simp depends on all (E-} ,  the right-hand side of (2.15) is in general a non-linear 
functional of the self-energies, while the left-hand side is a non-linear function of 8. 
Hence, (2.15) is a very complicated non-linear functional-integral equation. To calculate 
En, one should first calculate the exact Green function of the impurity model in (2.14) 
for general choice of the [ E n ) ,  and obtain an explicit expression for the right-hand side of 
(2.15). After that, one should solve the resulting non-linear integral equation. Of course, 
such a calculation can only be performed numerically. However, to examine the possibility 
of symmetry breaking, it is not necessary to explicitly solve these equations. 
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3. Staggered susceptibility and vertex function 

Suppose that G-, is a solution of (2.15). In the presence of a synunehy breaking field, the 
exact Green function is of the form 

where the anomalous Green function F, is related to the staggered magnetization M(h, T )  
of the underlying Hubbard Hamiltonian via 

Note that antiferromagnetic symmetry breaking in the original Hubbard model translates 
into ferromagnetic symmetry breaking in the impurity model. Because the impurity model 
is essentially zero-dimensional, no spontaneous symmetry breaking can occur in this model. 
Thus, the spin-susceptibility 2 of the impurity model, defined via 

remains finite for all values of T and U [ 141. However, 2 is not identical with the staggered 
susceptibility x of the Hubbard model, which is defined by 

Because the self-energies are complicated functions of the external field, the derivative 
in (3.4) does not simply produce the conelation function in (3.3). Below we shall make 
the relation between x and ,f precise, and show that the self-consistency condition (2.15) 
assures that x can diverge at a finite temperature, while 2 remains finite. 

To derive an expression for the staggered susceptibility, let us first assume that the 
hopping energies r, in (1.1) are only non-vanishing for nearest-neighbour sites. In the 
weak coupling regime, the generalization to arbitrary hoppings, subject to the restrictions 
mentioned earlier, is trivial and will be given shortly. Setting t, = t/m for T connecting 
neighbouring sites, the density of states in d = 00 is [2] 

PW = ~ o e x p ( - w , Z ~ ~ )  (3.5) 

with po E p(0) = (tm-’. The integration in (2.12) can~then be done analytically, and 
we find that the diagonal and off-diagonal elements of G- are given by 

iw, - En 

Q. 
G.  = -npoR, 

where 

2 112 Q. = [-(io,, - En)’ + (h - r.) ] 

R. = erfc ( 6 p o Q 2 , )  exp(xp,$i). 
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Here erfc(x) is the complimentary error function, and the root in (3.8) should be taken such 
that Re Q, > 0. The leading terms of R, for small and large polS2.l is 

(3.10) 

Thus, Rn acts as a high-energy cutoff for frequency summations, As long as the Matsubara 
sums are dominated by the infrared regime polon[ << 1, the precise form of the cutoff is 
irrelevant. Inclusion of hoppings between the sublattices beyond the nearest neighbours will 
lead to a different value of the cutoff pa, and a different functional form of the function R. at 
high frequencies. However, the low-frequency behaviour of (3.6H3.8) will be unchanged, 
because the form of these equations carries the unique signature of perfect nesting. Hence, 
for poll  < 1 all calculations presented below also hold for arbitrary hoppings, provided we 
substitute the value of po and the cutoff function R. corresponding to the particular choice 
of hoppings. 

To examine the stability of the paramagnetic phase, we now calculate the staggered 
susceptibility x. Substituting (3.7) into (3.2), differentiating with respect to h and letting 
h --f 0, we obtain an exact relation between the staggered susceptibility and the self-energy 
of the Hubbard model 

x=TCx. 
n 

(3.11) 

(3.12) 

where we have used the fact that, in a parameter regime where the symmetry is not 
spontaneously broken, limh-0 I',, = 0. It is understood that 0, and R, are now defined 
by setting h = r. = 0 in (3.8) and (3.9). The vertex function A, is defined via the Ward 
identity 

ar. A,, = 1 - lim -. 
h-0 ah 

(3.13) 

To obtain an exact equation relating the vertices An and the self-energies En, we differentiate 
the off-diagonal components of both sides of (215) with respect to h and then take the limit 
h --t 0. This yields the following infinite system of linear equations for A.: 

where the kernel inm is the dynamic spin-susceptibility of the impurity model 

(3.14) 

(3.15) 

Equation (3.14) is valid for all values of U and temperatures larger than the N&l temperature 
TN(U) .  The solution of (3.14) can be written in the form 

A. = q;' C(1- f i ) L A q m  (3.16) 
m 
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with 

(3.17) 

(3.18) 

(3.19) 

The numerical constant L is defined via the requirement that the vector I@) with components 
( R I @ )  = +n is a normalized vector in the Hilbert space e', i.e. (@I@) = E, +: = 1. This 
yields 

(3.20) 

It is extremely important that the solution of (3.14) can be written in terms of a pseudo- 
Hamiltonian I?, which is a Hermitian operator in the Hilbert space @. This enables us to 
apply standard quantum mechanical perturbation theory to study the spectrum of H. 

If at a certain temperature To one of the eigenvalues of fi reaches unity, there exists 
some divergent linear combination of the vertex functions An. However, the physical 
susceptibility x defined in (3.11) is a weighted sum over all vertex functions, and U priori 
one cannot exclude the following possibilities. (i) x diverges at a temperature TN where 
all eigenvalues of 6 are still smaller than unity. In this case TN > To. (ii) The linear 
combination of the A. that diverges does not contribute to x, so that TN c To. To illustrate 
these possibilities, let us directly look at the expression for x. From (3.11), (3.12) and 
(3.16) we obtain 

x = POL(@l(l - @-'I@). (3.21) 

The above possibility (i) means that L diverges at a temperature where the matrix element 
(qI(1 - k)-'l@) is still finite, while (ii) means that the eigenspace associated with the 
eigenvalue of 6 that first reaches unity is orthogonal to I@). Within the Hamee-Fock 
approximation I@) is an eigenvector of fi. We therefore isolate in f? the Hamee-Fock part 
by setting 

H = L ( I F * + P  ir=pou (3.22) 

where kp = l@)(@l. At weak coupling we expect that L o  = 0(1) close to TN, while the 
matrix elements of P are of higher order in 6. Suppose now we choose an orthonormal 
basis [I@), I&), CY = 1,2,  . . .) of the Hilbert space e* which diagonalizes in  the subspace 
orthogonal to I$): 

(4m131w = 6&e (+l&Y) = 0. (3.23) 

In this case at least one of the matrix elements 

V& = (+IPl$d (3.24) 
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must be non-zero, because P and p* do not commute. Using 

it is straightforward to show that x can be written as 

(3.26) 

(3.28) 

If the correction terms V( ' )  and V(') are small, then x is almost of the form predicted by the 
random-phase aeproximation. V ( ' )  is the usual first-order perturbative shift in the ground- 
state energy of H, while V(*) contains all higher orders. Using 1 = I@)(+l t E, l&J($al 
and writing (1 - = 1 + & ( I  -eu)-', it is easy to show that Vc2) can also be written 
as 

(3.29) 

The term in brackets on the right-hand side is the variance of the operator = 6 - Lfip$ 
in the Hartree-Fock eigenstate. Equations (3.26X3.29) are the main result of this section. 
These equations are exact and could be the starting point of a systematic numerical 
calculation of the N€el temperature. 

4. Calculation of TN at weak coupling 

So far no approximation {as been made. To make further progress, we need to know the 
properties of the operator V defined in (3.22). which is determined by the spin-susceptibility 
of the impurity model. For impurity models with a non-interacting Green function of the 
form 8, = (io. + iAsigno.)-', ZlatiC and HorvatiC [15] have rigorously proven that the 
perturbation series for the spin susceptibility is absolutely convergent for any lUl(00, and 
that in the weak coupling regime the first few terms of the series yield an extremely accurate 
approximation of the exact result. Although the self-consistent Green function 8. in (2.14) 
will not be of the form assumed in [E] ,  it is plausible that the validity of perturbation theory 
does not depend on the precise form of the non-interacting Green function. The fact that the 
Anderson impurity model is analytic in U has also been used by B a n g  and co-workers [6] 
in their recent study of the Mott transition. Hence the matrix 1. which determines V via 
(3.18) and (3.22). can be calculated perturbatively in the weak-coupling limit. A simple 
calculation gives 

- - 2  2 in, =a,, t f f i n * ~ , ~ ,  - TU n R~R,(K,+,,,  - K ~ )  +o(fir3) (4.1) 
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where 

(4.2) (o)G(o) K. = ; G, n-Y CAo’ = -inpoR.signw.. 

Inverting (4.1), and using the definitions (3.18) and (3.22). we find 

” 

{ M m )  = - ~ f i [ f i * ~ + ~ ~ + ,  + 0(rS2)] (4.3) 

so that 

Because K, is, for &On << 1, independent of n, the leading term in (4.4) is determined by 
KO. For T << 1 we obtain KO = &ln(l +a). Using the fact that by construction E ,  and 
the mahix elements VO, are of order U ,  we see that the last term in (3.29) is of order 8’. 
Moreover, although ($blPzI@) and are both of order fiz, the difference of these 
terms is of order 03, so that VC2) = O(f i3 ) .  The Nee1 temperature is therefore determined 

(4.5) 

Note that the derivation of this equation is based on the analyticity of the Anderson impurity 
model. Let us now consider the factor L defined in (3.20). Introducing the finitetemperature 
approximation to the wavefunction renormalization factor 1161 

by 

1 = L q l -  KO0 + O ( f i 3 ] .  

we have for small frequencies Q. = Z-’Iw,J, so that 

L = Z1nP-I + L O  +o(ri) (4.7) 

where Lo is a numerical constant of order unity. Combining (4.5) and (4.7) we conclude 
that the N6el temperature in the weak-coupling limit is given by 

Obviously the vanishing of the wavefunction renormalization factor Z at the phase transition 
implies that symmetry breaking does not occur at finite temperatures. We now assume that 
the spin rotationally invariant high-temperature phase is a Fermi liquid, and argue that 2 can 
be calculated perturbatively. Within second-order perturbation theory one finds in arbitrary 
dimension d 
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where f ( c )  is the Fermi function. In d = CO we may replace 6. -+ 1 / N .  Then it is easy 
to see that the integral in (4.9) is finite even at T = 0, so that 

z-l= 1 + zifi2 + o m  (4.10) 

where il is a numerical constant of order unity. It is important to stress that (4.9) can 
be continued below TN by replacing lek1 -+ d m ,  where m is the mean-field 
staggered magnetization. Hence perturbation theory suggests that, in d = CO, the symmetry 
breaking bas no effect on the wavefunction renormalization factor Z. Physically, this means 
that the low-lying excited states above the relevant vacuum are in one-to-one correspondence 
with the low-lying non-interacting eigenstates. The wavefunction renormalization factor Z 
should not be confused with the overlap ( F L I S D W )  between the non-interacting ground 
state IFL) and spin-density wave ground state ISDW). Within mean-field theory one finds 
for finite but large N 

J(FLISDW)J' = exp(-NmD). (4.11) 

For mfi  > 0 this overlap vanishes in the thermodynamic limit N + CO. Because there is 
no sign of a breakdown of perturbation theory, it is at least very reasonable to assume that 
for sufficiently small fi the perturbative result 2-' = 1 + z i f i *  is accurate, Inserting (4.10) 
into (4.8), we see that the Hartree-Fock result TNHF for the NkI temperature is renormalized 
by a finite factor even in the limit fi + 0: 

4 0.29. 
TN 1 

(1 + lim - - exp(-Ko) = 
fi+o TtF - (4.12) 

Equation (4.12) was first derived by van Dongen from the Onsager reaction field correction 
to Hartree-Fock theory [3]. In our derivation we have used the well known analyticity 
of the Anderson impurity model to show that at weak coupling the only approximation 
necessary to derive (4.12) that is not completely controlled is the perturbative form of the 
wavefunction renormalization factor Z given in (4.10). A priori one cannot exclude the 
possibility that the perturbation series for 2-' contains at nth order a term proportional to 
fi(Lfi)"-' .  Because L f i  ~3 I, close to the phase transition, this term would renormalize the 
coefficient in (4.12). However, even if such a term exists, a finite 2 in the low-temperature 
regime is sufficient to imply spontaneous symmetry breaking at a finite temperature. 

5. Conclusions 

The existence of an antiferromagnetic instability in the weak-coupling regime of the half- 
filled Hubbard models with perfect nesting is not surprising. Such an instability is predicted 
by Hartree-Fock theory in all dimensions. While in one dimension this instability is known 
to be an artifact of mean-field theory, conventional wisdom is that at least in high enough 
dimensions Hartree-Fock theory becomes very accurate. In the present work we have shown 
that in finite dimensions spontaneous symmetry does indeed occur at a finite temperature if 
2 > 0, i.e. if the spin rotationally invariant high-temperature phase is a Fermi liquid. In 
this case perfect nesting and particle-hole symmetry are sufficient to lead at weak coupling 
to a spontaneous magnetization at a finite temperature. 
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What is the relevance of our result to finite dimensions? For d e 03 the density of 
states p ( 6 )  vanishes outside a fixed interval. However, we have seen that in the weak- 
coupling regime the only parameter that determines the infrared behaviour of Matsubara 
sums is p(0) .  Therefore, we believe that in all dimensions d 3 3 the half-filled repulsive 
Hubbard model has indeed antiferromagnetic long-range order below a finite temperature 
&(U). Obviously this result does not extrapolate to d = 1, where we know that there 
is no spontaneous magnetization for all U, even at T = 0 1171. In d = 2 Hmee-Fock 
theory is completely incorrect at T > 0, because it predicts spontaneous symmetry breaking 
at low temperatures, although the rigorous Mermin-Wagner theorem [18] tells us that this 
can happen only at T = 0. Note also that in two dimensions p ( 0 )  = 00 due to Van Hove 
singularities. Thus, at weak coupling the extrapolation of the physics in d = CO to d = 2 
is not possible. For nearest-neighbour hopping and large U, the half-filled square-lattice 
Hubbard model is equivalent to a two-dimensional quantum Heisenberg antiferromagnet, 
which seems to be ordered at T = 0. There remains the possibility that the order in 
the ground state is destroyed in the weak-coupling regime [19,20]. It can be shown [21] 
that, even for arbitrarily small U, the perturbation expansion is not governed by a small 
parameter, and that, in contrast to d > 3, corrections to Hartree-Fock theory in d = 2 lead to 
a Niel temperature that is for U + 0 exponentially small compared with the HartreeFock 
result. Furthermore, it is not difficult to see that the lowest-order correction to the inverse 
wavefunction renormalization Z;' given in (4.9) diverges in d = 2 for T + TN = 0 if k 
is located at the comers of the Brillouin zone. Thus, d = 2 seems to be closer to d = I ,  
and a simple Hartree-Fock description of antiferromagnetism at weak coupling seems not 
to be justified. 
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